A Recursive Born Approach to Nonlinear Inverse Scattering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse scattering as nonlinear tomography

Abstract. The reconstruction problem for the acoustic tomography with non-homogeneous background is discussed. We develop a method of beamlike solutions of a Helmholtz equation which is not sensitive to caustics. For small perturbations of the speed the inverse scattering problem is reduced to inversion of a ray integral transform. An explicit formula is given for beam-like solutions in a homog...

متن کامل

Linear and Nonlinear Inverse Scattering

In this paper we discuss one dimensional scattering and inverse scattering for the Helmholtz equation on the half line from the point of view of the layer stripping. By full or nonlinear scattering, we mean the transformation between the index of refraction (actually half of its logarithmic derivative) and the reflection coefficient. We refer to this mapping as nonlinear scattering, because the...

متن کامل

Wavelet-based methods for the nonlinear inverse scattering problem using the extended Born approximation

In this paper, we present an approach to the nonlinear inverse scattering problem using the extended Born approximation (EBA) on the basis of methods from the fields of multiscale and statistical signal processing. By posing the problem directly in the wavelet transform domain, regularization is provided through the use of a multiscale prior statistical model. Using the maximum a posteriori (MA...

متن کامل

Geometrical Approach to Inverse Scattering forthe Dirac

The high-energy-limit of the scattering operator for multidimensional relativistic dynamics, including a Dirac particle in an electromagnetic eld, is investigated by using time-dependent, geometrical methods. This yields a reconstruction formula, by which the eld can be obtained uniquely from scattering data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Letters

سال: 2016

ISSN: 1070-9908,1558-2361

DOI: 10.1109/lsp.2016.2579647